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Abstract
Gene-set analysis aims to identify differentially expressed gene sets (pathways) by a phenotype in DNA microarray
studies. We review here important methodological aspects of gene-set analysis and illustrate them with varying
performance of several methods proposed in the literature. We emphasize the importance of distinguishing
between ‘self-contained’ versus ‘competitive’ methods, following Goeman and Bu« hlmann.We also discuss reducing a
gene set to its subset, consisting of ‘core members’ that chiefly contribute to the statistical significance of the
differential expression of the initial gene set by phenotype. Significance analysis of microarray for gene-set reduction
(SAM-GSR) can be used for an analytical reduction of gene sets to their core subsets. We apply SAM-GSR on a
microarray dataset for identifying biological gene sets (pathways) whose gene expressions are associated with p53
mutation in cancer cell lines. Codes to implement SAM-GSR in the statistical package R can be downloaded from
http://www.ualberta.ca/�yyasui/homepage.html.
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GENE-SETANALYSISMETHODS
Increasing use of DNA microarrays in biomedical

research has been stimulating methodological

research on data-analytical approaches that help

gain insights into biological functions of genes and

pathways. One important goal of microarray data
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analyses is to evaluate the association of a priori

defined gene sets with a phenotype of interest, i.e.

gene-set analysis. Using gene sets, often taken from

databases, such as Gene Ontology, KEGG and

BioCarta, many gene-set analysis methods follow a

two-step algorithm:

Gene-set analysis algorithm

(1) A test statistic that is intended to measure the

deviation of gene-set expression measurements

from the null hypothesis of no association with

the phenotype is calculated.

(2) Statistical significance (P-value) for each gene set

is calculated based on permutations of samples.

When there are a large number of gene sets being

evaluated, the statistical significance for each gene set

is often corrected for multiple testing of many

hypotheses (gene sets) [1] or a false discovery rate [2]

of each gene set is calculated instead.

The gene-set analysis methods vary by the test

statistic used in (1). In their review paper, Nam and

Kim [3] lists gene-set analysis methods, availability

and reference in Tables 1 and 2, as well as gene-

set databases for various organisms in Table 3. We

give here details on several gene-set analysis

methods, including their capability to handle various

phenotypes. Gene-set enrichment analysis (GSEA),

proposed by Mootha et al. [4] and improved by

Subramanian et al. [5], for example, uses an enrich-

ment score based on a Kolmogorov–Smirnov statistic

as the test statistic. GSEA is currently the most

popular method for gene-set analysis, with a user-

friendly desktop application, which can be down-

loaded from www.broad.mit.edu/gsea. An extensive

collection of gene sets and pathways are also available

from the same website. Significance analysis of

function and expression (SAFE) proposed by Barry

etal. [6] extends GSEA to cover multiclass, continuous

and survival phenotypes, and gives analysts more

options for the test statistic: Wilcoxon rank sum;

Kolmogorov–Smirnov and Hypergeometric statistic.

SAFE is available as an R package in Bioconductor:

http://bioconductor.org/packages/2.0/bioc/html/

safe.html. Jiang and Gentleman [7] extend GSEA to

allow for covariates adjustments and discuss the use

of principal component analysis to reduce the gene

sets prior to the enrichment analysis. Goeman et al.
[8] employed a score test based on a random-effect

logistic model fit for each gene set, and subsequently

extended their method to multiclass, continuous

and survival phenotypes, and allowed for covariate

adjustments [9]. Their method is available as an R

package called GlobalTest: http://bioconductor.

org/packages/2.0/bioc/html/globaltest.html. Man-

smann and Meister [10] used an analysis of

covariance (ANCOVA) F-test to measure the

deviation of gene sets from the null hypothesis,

and their method accommodating multiclass, con-

tinuous phenotypes and covariate adjustments, is

available as an R package in Bioconductor: http://

bioconductor.org/packages/2.2/bioc/html/Global

Ancova.html. To account for the multivariate struc-

ture of the gene sets, Kong et al. [11] uses Hotelling’s

T2 and either the original data or an orthonormal

projection, depending if the dimensionality assump-

tion for the multivariate test holds or not. Dinu et al.
[12] pointed out critical problems of GSEA and

extended a single-gene analysis by significance

analysis of microarray (SAM) [13] to gene-set

analysis (SAM-GS). Their test statistic was the L2
norm of the vector of the SAM statistics, corre-

sponding to the genes in the gene set of interest.

The use of the SAM statistic accounted for the small

variability of a subset of genes, a characteristic

feature of microarray data [13]. SAM-GS software is

available in Excel, Python and R (www.ualberta.ca/

�yyasui/homepage.html). In line with the work

of Dinu et al. [12] and Goeman et al. [8, 9],

Adewale et al. [14] proposed a unified gene-set

analysis approach of diverse phenotypes, including

multi-class, continuous and censored-survival phe-

notypes, while allowing covariate adjustments

and correlated phenotypes by use of regression

methods. Implementations for various phenotypes

are available in R.

In addition to the several examples listed above,

many gene-set analysis methods have been proposed.

Tian et al. [15] emphasized the importance of

distinguishing between the gene-sampling versus

subject-sampling methods. In an extensive review,

Goeman and Bühlmann [16] Discussed methodolog-

ical principles behind gene-set analysis and estab-

lished the distinction between testing ‘self-contained

null hypotheses’ that use subjects/specimens as the

sampling units and testing ‘competitive null hypoth-

eses’ that use genes as the sampling units. The former

evaluates self-contained null hypothesis in the sense

that the test statistic requires only the gene expression

measurements of the gene set being tested. The latter

evaluates competitive null hypothesis in the sense that
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the test statistic compares the gene expression

measurements of the gene set being tested to those

of the genes outside of this set. Goeman and

Bühlmann [16] strongly recommended against the

testing of competitive null hypotheses with the use

of gene-sampling methods, on the grounds of its

untenable statistical independence assumption across

genes. Delongchamp et al. [17] also commented on

how ignoring the correlations within the sets can

overstate significance, and propose meta-analysis

methods for combining P-values with a modification

to adjust for correlation. In their review paper, Nam

and Kim [3] revisited the two different null

hypotheses for testing the association of a gene set

with a phenotype, as introduced by Tian et al. [15].
The first type of hypothesis, called Q1, is competitive
and tests whether the level of association of a gene set

with the phenotype is equal to those of the other

gene sets. The second type of hypothesis, called Q2,

is self-contained and tests whether gene expressions

of a gene set differ by the phenotype. They ran a

simulation study and compare the performance of

competitive, self-contained and GSEA methods. We

would like to emphasize that the data used by Nam

and Kim [3] simulation study was generated under

Q1, and therefore it is expected that competitive
methods would return a uniform P-value, and self-
contained methods would identify most of the sets as

being differentially expressed. In their simulation

study, 30% of all genes were truly differentially

expressed and each gene set was built such that 30%

of genes in each gene set are differentially expressed.

The competitive-methods community thinks that

no gene set generated according to this simulation

scheme should be called differentially expressed

because all gene sets have the same level of asso-

ciation with the phenotype. On the other hand, the

self-contained-methods community thinks that all

genes sets should be called differentially expressed

because 30% of genes of each gene set are

differentially expressed. This fundamental disagree-

ment on the concept of, not the methods for

identifying, differentially expressed gene sets has not

been recognized in the literature, and it is a key point

in the debate between the self-contained versus compe-
titive methods.

To further illustrate this disagreement, we

performed a simulation study based on Q2, and

showed that it is supportive of self-contained

methods over competitive ones. This study com-

pared the distribution of P-values obtained from the

analyses of the three hypotheses Q1, Q2 and Q3 on

simulated data. We generated expression profiles of

4000 genes with two groups, each having 20

samples. The first 2000 genes were divided into

100 gene sets, each of which contained 20 genes.

The expression values in each of the 100 sets

followed a multivariate normal distribution, with

mean vector zero, and variance–covariance matrix

with constant off-diagonal entry generated from Unif
(0.5, 0.9) (i.e. no gene was differentially expressed

between the two groups, and pairs of genes within

each set have a constant correlation generated

uniformly from 0.5 to 0.9). The expression values

for the remaining 2000 genes were sampled from

a standard normal distribution in both groups

(i.e. no gene was differentially expressed between

the two groups and the gene expression values

are uncorrelated). Similar to the simulation study of

Nam and Kim [3], we compared the difference of

the three hypotheses using the average t-statistic in a

gene set as the test statistic. Since none of the genes

were differentially expressed, no gene sets were

expected to be identified as significant. Indeed, the

self-contained method (Q2) recognized no differen-

tially expressed sets so the P-values were distributed

uniformly (Figure 1). However, the competitive

method (Q1) detected 27 of the 100 sets as

differentially expressed with a P-value cutoff of

0.05. The mixed approach, GSEA, identified 64 of

the sets as differentially expressed, which is a con-

sequence of the fact that GSEA tests clustering of the
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Figure 1: The P-value distributions of 100 gene sets for
the three GSA approaches on simulated data. A total of
10 000 permutationswereperformed for gene or sample
randomizations on the average t-score.
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genes in the correlation order, and this aspect has also

been illustrated and explained by Dinu et al. [12].
Also, we would like to mention that when the set

size was increased to 100 with a constant correlation

of 0.9 within each set, competitive method identified

40 of the sets as being significant. This illustrates the

wrong use of the gene sampling technique in

situations where gene expressions within a set exhibit

large correlations, a situation not uncommon in

gene-set analysis of microarray data. Chen et al. [18]
also argue their preference for Q2 over Q1, because

the P-values computed under Q2 are consistent with

the principle of statistical significance testing, while

the P-values computed under Q1 do not take into

account correlations among genes.

Based on the simulation study, Nam and Kim [3]

recommended the use of GSEA, because it is a mixed

approach and its performance is in between the com-
petitive and self-contained methods. We disagree that

GSEA can be considered a mixed approach or that its

performance is in between competitive and self-contained
(Figure 1). Dinu et al. [12] showed how GSEA calls

gene sets with genes clustered in the low correlation

region as significant. GSEA is testing the ‘clustering’

of the gene-set’s genes in the degree of association

with a phenotype. Gene-set analysts would like to

find gene sets that cluster at the high degree of

association with the phenotype: these gene sets are

truly differentially expressed. But GSEA will find

gene sets whose genes cluster at any degree of

association, including no association. This tendency

for leading to false positive findings is one major

problem of GSEA. Also, GSEA has a tendency for

leading to false negative findings if differentially

expressed gene sets have genes whose degrees of

association with the phenotype are heterogeneous

(i.e. a mix of differentially expressed genes and not

differentially expressed genes). The testing of cluster-

ing is not going to pick up gene sets that have mixed

degrees of association (i.e. not all genes are clustered).

Another aspect we would like to comment on is

that Nam and Kim [3] recommends using all

methods simultaneously, if possible, with biological

analyses. We agree that it is useful to compare

different methods, as long as the user is aware of their

advantages and limitations.

Care must be exercised when conducting simula-

tion studies to compare self-contained and competitive
methods. Any simulation study based on data

generated under either Q1 or Q2 would be naturally

supportive of competitive or self-contained methods,

respectively. We agree about a concern on the self-
containedmethods that a small number of genes in the

gene set can make the set significantly differentially

expressed. In this situation, we recommend the use

of gene-set reduction to a core subset that can be

further interpreted by the scientist. We present an

approach to gene-set reduction, and illustrate its use

on a real data set, in the next two sections.

Although a large number of gene-set analysis

methods have been proposed, little attention has

been paid to comparative performances of the

various methods. Liu et al. [19] compared the

performance of three ‘self-contained null hypothesis’

testing methods, global test [9], ANCOVA global

test [10] and SAM-GS [12], via simulated and

real-world microarray data analyses, both statistically

and biologically. They found that global test and

ANCOVA global test require an appropriate stand-

ardization of gene expression measurements across

genes for proper performance. After standardization

of these two methods, the performance of all three

methods was very similar, when using permutation-

based inference, with a slight power advantage in

SAM-GS (Table 1). Liu et al. [19] also applied three

‘competitive null hypothesis’ testing methods in the

real data comparisons: GSEA [5]; SAFE [6] and

Fisher’s exact test [20]. Note that, while Fisher’s

exact test is truly a ‘competitive’ method, GSEA and

SAFE are hybrids between ‘self-contained’ and

‘competitive’ approaches: their test statistic is moti-

vated by a gene-sampling model of ‘competitive’

methods, whereas a subject-sampling model of ‘self-

contained’ methods is used for calculating statistical

significance of phenotype-associated differential gene

expression of each gene set [19]. Liu et al. [19]

showed clearly diverging results between ‘self-

contained’ and’competitive’ methods. These results,

summarized in Table 1, show low power of the

‘competitive’ methods for identifying differential

expression by phenotype of gene sets that are

known to have biological links to p53. To exemplify,

the ‘self-contained’ methods identified as differen-

tially expressed all the seven gene sets containing p53
as a member, whereas SAFE and Fisher’s exact test

missed on all these sets and GSEA missed on two of

the seven sets. The five gene sets involved in

apoptosis were identified by the ‘self-contained’

methods, whereas SAFE and GSEA missed on three

of them, and Fisher’s exact test did not identify any

of them. To summarize, the ‘self-contained’ methods

(two global tests and SAM-GS) identified properly
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the gene sets with biological links to p53
as significant, whereas the ‘competitive’ methods

missed on an appreciable proportion of these sets.

These findings are in line with the methodological

discussions offered by Goemann and Bühlmann [16]

in their review paper. Goemann and Bühlmann [16]

state that they expect these differences in perfor-

mance between the two types of methods to be

more evident when dealing with datasets where a

large number of genes are differentially expressed.

Gene-set reduction
Gene-set analysis considers gene sets and pathways

that are fixed a priori, typically from databases such as

Gene Ontology, KEGG and BioCarta. In many

applications, this meets the central goal of microarray

data analyses. In other applications, however, gene

sets are not well-established a priori and scientific

interest may focus on the membership of gene sets

based on the information provided in the microarray

data being analyzed. Suppose, for example, there was

a preliminary in-house gene set that was a priori

assembled and hypothesized by a research team for its

differential gene expression by the phenotype of

interest. If a gene-set analysis identifies differential

expression of this gene set in the microarray data, a

natural next step would be to ask: ‘are all members of

this gene set essential, or is a subset sufficient, in

considering its link with the phenotype of interest?’

We consider here a method for extracting a core set

of genes that chiefly contribute to the statistical

significance of differential expression of a given gene

set by a phenotype. The method is referred to as

SAM-GS reduction (SAM-GSR), an extension of

our SAM-GS analysis [12] to the gene-set reduction

problem. We discuss the performance of the pro-

posed method using simulations. Results and their

biological interpretations of a SAM-GSR analysis,

Table 1: P-values for the three ‘self-contained null hypothesis’ and three ‘competitive null hypothesis’ approaches for
the genes sets with P-value� 0.001by any of the six methods

p53 link Gene set Self-contained null hypothesis Competitive null
hypothesis

Before standardization After standardization

Global ANCOVA SAM-GS Global ANCOVA SAM-GS SAFEa GSEAa Fishera

Pathway member ATM pathway <0.001 <0.001 <0.001 <0.001 0.002 <0.001 0.494 0.215 0.984
p53 signaling pathway 0.112 0.101 <0.001 0.003 0.003 0.001 0.289 0.013 0.994
p53_UP 0.003 0.004 <0.001 <0.001 <0.001 <0.001 0.413 <0.001 1.000
p53hypoxia pathway 0.626 0.622 <0.001 <0.001 <0.001 <0.001 0.343 <0.001 1.000
p53 pathway 0.142 0.150 <0.001 <0.001 <0.001 <0.001 0.273 <0.001 1.000
Radiation_sensitivity 0.119 0.135 <0.001 <0.001 <0.001 <0.001 0.204 0.002 0.998
CR_DEATH 0.001 0.004 0.008 0.029 0.017 0.004 0.718 0.314 0.833

Apoptosis BAD pathway <0.001 0.007 <0.001 <0.001 <0.001 <0.001 0.029 0.044 0.996
Hsp27pathway 0.047 0.044 <0.001 <0.001 0.001 <0.001 0.027 <0.001 1.000
Mitochondria pathway 0.002 0.002 <0.001 0.007 0.007 <0.001 0.543 0.329 0.923
bcl2family & reg.

network
0.102 0.100 0.001 0.001 0.005 <0.001 0.064 0.426 0.880

Ceramide Pathway 0.002 0.006 0.001 0.004 0.004 <0.001 0.421 0.308 0.891
p53-induced proline

oxidase mediates
apoptosis via a
calcineurin-
dependent pathway

Calcineurin pathway 0.068 0.084 <0.001 0.007 0.002 <0.001 0.668 0.138 0.933

Cell cycle Cell cycle regulator 0.021 0.017 <0.001 0.002 0.001 <0.001 0.025 0.293 0.969
Raccycd pathway 0.177 0.181 <0.001 0.001 <0.001 <0.001 0.117 0.565 0.891

Integrated negative
feedback loop
between Akt and
p53

SA_TRKA_RECEPTOR 0.254 0.252 <0.001 0.001 <0.001 <0.001 0.362 0.347 0.792

NA HUMAN_CD34 _
ENRICHED_TF_ JP

0.584 0.566 0.699 0.734 0.721 0.471 0.989 0.3703 0.001

aThe only additional gene set identifiedwith P <0.001by any of SAFE,GSEA and Fisher was HUMAN_CD34_ENRICHED_TF_ JP.For this gene set, Fisher
P-valuewas <0.001, but all the other fivemethods gave P-values>0.37.
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applied to a microarray study for identifying

differentially expressed biological pathways by p53
mutation in cancer cell lines, are presented. Code to

implement SAM-GSR in the statistical package R

can be downloaded from http://www.ualberta.ca/

�yyasui/homepage.html.

For gene-set analysis, SAM-GS [12] combines the

t-like statistics of individual genes into a measure of

association of a gene set with the phenotype. For a

gene set S, SAM-GS is the L2 norm of the t-like
statistics:

SAM-GS ¼
XjSj

i¼1

d2i ;

where di ¼ x1ðiÞ � x2ðiÞ=sðiÞ þ s0 is calculated for

each gene i, x1ðiÞand x2ðiÞ are the sample averages

corresponding to each of the two groups of the

phenotype, sðiÞ is a pooled standard deviation over

the two groups of the phenotype, and s0 is a small

positive constant that adjusts for the small variability

in microarray measurements [12]. Statistical signifi-

cance of S is obtained based on a phenotype-label

permutation test.

Given a statistically significant association of the

gene set S with the phenotype, we may consider a

gene-set reduction analysis for S. We apply SAM-

GS sequentially to subsets of the significant gene set

S and identify a core set of genes that chiefly

contribute to the statistical significance of S. In

reducing the gene set S, we use the following

principle: for a pair of genes in S, genes i and j,
dij j> jdjj suggests that gene j belongs to a subset only

if gene i belongs to the subset. This principle is

motivated by the fact that d2i is the each gene’s

contribution to the test statistic SAM-GS and the

core subset must consist of genes with larger

contributions.

SAM-GSR gradually partitions the entire set S,
into two subsets, based on the principle above and

evaluates their association with the phenotype.

SAM-GSR can be summarized in a few steps:

SAM-GSR Steps for a given gene set S:
(1) For each of the N genes, calculate the statistic

d as in SAM for an individual-gene analysis as above:

di ¼
x1ðiÞ � x2ðiÞ
sðiÞ þ s0

:

(2) For k ¼ 1; . . . ; jSj�1, select the first k genes

with largest statistic |d| to form a reduced set Rk. Let

Rk be the complement of Rk in S, and ck be the

SAM-GS P-value of Rk.

(3) The reduced set Rk corresponds to the least k
such that ck is larger than a threshold c, chosen by the

analyst.

We note that by removing genes with joint

statistical significance, as a set, above a threshold, i.e.

ck> c, we are protected against losing genes that are

not significant by themselves, but collectively, they

form a set that is significant. This gene-set scenario

was discussed by GSEA developers, both [4] and [5],

and it is not unusual in pathway analysis. Since SAM-

GSR is based on joint statistical significance of

subsets, it will tend to keep members of a set that are

not significant by themselves, but as a set they

become significant. The work on well-defined

inferential criteria for gene selection, such as FDR,

abounds and one can think of applying such criteria

to extract core subsets, by simply using an FDR

cutoff within the gene set, for example. However,

we would like to point out that SAM-GSR selects

core subsets by combining the contribution of each

gene into an overall measure of association, rather

than looking at individual FDR values. Also, an

interesting aspect of pathway analysis is that by

combining the genes into a measure of association, a

tendency of multiple genes to work together towards

the significance of the set is taken into account. A set

consisting only of moderately associated genes can

still be significant. SAM-GSR will tend to keep all

members of such sets, because the subsets consisting

of moderately associated genes can still be significant,

while an individual FDR value criterion may be

missing on moderately associated genes, and drop

them from the set. This aspect will be exemplified in

the next section.

We explain here the rationale behind selecting

the core subsets based on ck values rather than pk
values. We note that if a gene set is significantly

associated with a phenotype, the reduced set will also

be significant. Therefore, the pk values can be really

low in magnitude—we encountered the situation

where they were all zero, even if Rk contains noise

genes—making it difficult to choose a core pathway

based on these values. On the other hand, the

increasing trend in the ck values, exhibited at the

beginning of the reduction process, enables the user

to choose from a range of cutoff values from more

conservative such as 0.05 to more liberal such as 0.5,

giving the user the flexibility to gradually include

more genes in the core pathway.

We evaluated the performance of SAM-GSR in a

simple simulation study as a proof-of-principle
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experiment. The results of the simulations are

presented in the Appendix.

Extracting core subsets for p53 cancer
cell-lines
To illustrate the application of SAM-GSR, we

performed gene-set reduction analysis using a

microarray dataset considered in Ref. [5], in which

two types of cancer cell-lines were compared: 17

cell-lines with wild-type p53, and 33 cell-lines with

mutant p53. Briefly, the microarray data were

obtained by hybridizing mRNA to Affymetrix

HGU95Av2 chip. These arrays contain 12 625

probe sets whose expressions were reduced from

the probe level to the gene level of 10 100 unique

genes, by taking the maximum probe set expression

of each gene in each sample, as described in Ref. [5].

For gene sets, we used Subramanian et al.’s gene-set
subcatalogs C2 from Ref. [5]. Catalog C2 consisted

of 472 sets containing genes reported in manually

curated databases, and 50 sets containing genes

reported in various experimental papers. Following

Ref. [5], we restricted the set size to be between 15

and 500, resulting in 308 gene sets.

SAM-GS analysis reveals 31 gene sets in the C2

catalog that are significantly associated with p53 wild-
type versus mutant cancer cell-lines phenotype, at a

cutoff P-value of 0.01, FDR of 0.033. We calculated

the ck values, k ¼ 1; . . . ; jSj�1 for each of these sets.

Intuitively, by gradually eliminating genes with large

|d| statistic, the ck values should increase, and this is

confirmed throughout our results, see Figure 2 for an

illustration using p53 signaling pathway. Table 2

shows the core subsets extracted by SAM-GSR, for

these 31 sets, using a cutoff c¼ 0.1 for ck values. On

average, SAM-GSR reduced the number of genes in

the 31 gene sets by 93%. Cyclin-dependent kinase

inhibitor 1A, CDKN1A, a gene known to be

regulated by p53 [21], appears most frequently in

the 31 core subsets. Some well-characterized targets

or regulators of p53 showing up in the core subsets

include: BCL2-associated X protein (BAX) [22],

B-cell leukemia/lymphoma 2 (BCL2) [22], MDM2
[23] and tumor necrosis factor receptor superfamily,

member 6 (TNFRSF6) [24].
We exemplify below the advantage of SAM-

GSR over individual gene FDR cutoffs, for genes

sets consisting of genes moderately correlated with

the phenotype. One example of this sort is given by

hsp27 Pathway: all the genes in this pathway exhibit

moderate correlation with the phenotype, with

individual FDR values ranging from 0.17 to 0.74.

If we chose to reduce the set based on individual

genes’ FDR values (cutoff 0.25, for example), we

end up with a reduced set consisting of only two

genes. It is unclear then if we kept all important

genes in this way: in fact, the remaining genes

actually formed a set with a fairly large SAM-GS

statistic (P¼ 0.004). Other examples similar to this

one are ets Pathway (individual gene FDR values

ranging from 0.28 to 0.74) and cytokine Pathway

(individual gene FDR values ranging from 0.30 to

0.74). We would like to point out that the FDR

values are based on the total number of genes in the

array, and therefore may be over-conservative when

reported in the context of the selected sets, since

these sets have been selected based on P-value cutoff
0.01, and FDR of 0.033. On the other hand,

reporting the FDR values based on only the genes

present in the selected sets, is not without problem,

as it ignores the tens of thousands of genes tested

across the array.

We encountered situations where a whole

gene set is reduced to a single gene. That suggest

the subset consisting of the remaining genes is

not differentially expressed. If the significance of

a set is due to only one gene, the set should be

examined biologically with caution: for example,

functional roles of the significant gene within the

gene set may be considered subsequent to this

finding.
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Figure 2: Increasing trend of ck, k¼ 1; . . . ; jSj�1, for
p53 signaling. For k¼ 1; . . . ; jSj�1, we select first k
genes with largest statistic jdj to form a reduced set Rk;
ck is the SAM-GS P-value of Rk, the complementof Rkin S.
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To gain more insight into SAM-GSR behavior,

we varied the cutoff c, incrementally from 0.05 to

0.5. Median FDR values, together with the inter-

quartile range, from 25%-tile to 75%-tile were

calculated for: (i) members of each core pathway,

and (ii) members of the complement of the core

pathway in the corresponding set. These summaries

of FDR values of individual genes within the

pathway, and also within its complement, were

plotted for each cutoff value c, ranging from 0.05 to

0.5, in Supporting Text. There is a considerable

separation between median FDR values correspond-

ing to members of the core pathway and its

complement. In addition, there is very little overlap

between the FDR inter-quartile ranges of the core

pathway and its complement. The median and inter-

quartile ranges tend to get closer for larger cutoffs c as
expected. These results are consistent throughout the

31 gene sets, indicating that SAM-GSR is useful in

extracting core subsets.

DISCUSSION
We reviewed here some key issues associated with

gene-set analysis methods, and emphasized the

discrepancy between the two types of methods

dividing the literature devoted to this topic: self-
contained versus competitive methods. Gene-set ana-

lysts must know that, while a large number of

gene-set analysis methods are available, their

performances are greatly different and they do not

lead to the same scientific conclusions. In particular,

in a study of p53 wild-type versus mutant cancer

cell-lines, the ‘competitive’ methods missed on

many of the gene sets linked to p53, whereas the

‘self-contained’ methods identified these sets as

important.

We also explore a new direction: gene-set

reduction. Large gene sets may achieve statistical

significance for their association with the phenotype,

although not all members are essential: we illustrated

here the use of SAM-GSR to reduce gene sets to

Table 2: Extracting core subsets for p53 cell-lines

Gene set Gene-set
size

Core
pathway
size

Percent
reduction

Core pathway members (SAM-GS P-values)

ATM Pathway 19 2 89.5 CDKN1A (0.001), MDM2 (0.001)
BAD Pathway 21 2 90.5 BAX (0.001), BCL2 (0.001)
bcl2family & reg. network 23 1 95.7 BAX (0.001)
Calcineurin pathway 18 1 94.4 CDKN1A (0.001)
Cell cycle regulator 23 2 91.3 CDKN1A (0.001), BTG2(0.002)
D _DAMAGE_SIG_LLING 90 5 94.4 CDKN1A (0.001), BAX (0.001), DDB2 (0.001), MDM2 (0.001), BTG2 (0.003)
drug_resistance_and_metabolism 95 2 97.9 CDKN1A (0.001), BAX (0.001)
g2 pathway 23 2 91.3 CDKN1A (0.001), MDM2 (0.001)
hsp27 pathway 15 4 73.3 FAS (0.001), TNFRSF6 (0.001), BCL2 (0.002), IL1A (0.002)
p53 signaling 87 3 96.6 CDKN1A (0.001), BAX (0.001), MDM2 (0.001)
p53hypoxia pathway 20 3 85.0 CDKN1A (0.001), BAX (0.001), MDM2(0.001)
p53 Pathway 16 3 81.3 CDKN1A (0.001), BAX (0.001), MDM2 (0.001)
Raccycd pathway 22 1 95.5 CDKN1A (0.001)
radiation_sensitivity 26 3 88.5 CDKN1A (0.001), BAX (0.001), MDM2 (0.001)
SA_TRKA_RECEPTOR 16 1 93.8 CDKN1A (0.001)
P53_UP 40 5 87.5 CDKN1A (0.001), BAX (0.001), DDB2 (0.001), MDM2 (0.001), BTG2 (0.003)
breast_cancer_estrogen_sig lling 97 3 96.9 CDKN1A (0.001), TNFRSF6 (0.001), ESR2 (0.003)
Ceramide pathway 22 1 95.5 BAX (0.001)
CR_DEATH 70 1 98.6 BAX (0.001)
Mitochondria pathway 19 1 94.7 BAX (0.001)
g1 pathway 26 1 96.2 CDKN1A (0.001)
SIG_IL4RECEPTOR_IN_B_LYPHOCYTES 26 1 96.2 STAT6 (0.001)
ST_Interleukin_4_Pathway 24 1 95.8 STAT6 (0.001)
ets pathway 16 2 87.5 SIN3B (0.003), CSF1R (0.004)
ca_nf_at_sig lling 95 2 97.9 CDKN1A (0.001), BCL2 (0.002)
cell_cycle_arrest 30 1 96.7 CDKN1A (0.001)
Cellcycle pathway 23 1 95.7 CDKN1A (0.001)
Chemical pathway 21 1 95.2 BAX (0.001)
ST_Fas_Sig ling_Pathway 56 1 98.2 BAX (0.001)
Cytokine pathway 21 2 90.5 IL1A (0.002), IFNA1(0.005)
Hivnef pathway 54 2 96.3 MDM2 (0.001), TNFRSF6 (0.001)

Core subsets extracted by SAM-GSR, for 31sets significant at 0.01, using a cutoffc¼ 0.1for ck values.
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smaller sets. We would like to emphasize that SAM-

GSR does not change the list of significant genes.

SAM-GSR is not testing any specific null hypothesis.

It is simply a useful analytical tool to reduce a gene

set that has previously been found differentially

expressed, to a core set, by gradually exploring the

association of remaining genes as a set with a

phenotype. Its stopping rule (i.e. the cutoff value)

is arbitrarily chosen by the analyst without any

claimed statistical properties associated with a given

specific choice. The analyst can choose the cutoff

(possibly multiple cutoffs) conservatively or liberally

and consider the reduced set(s) with respect to the

whole set in biological terms. Using different cutoffs

for different gene sets is possible for a more flexible

reduction.

Reducing a significant gene sets to core subsets is

a useful step towards understanding biological

mechanisms underlying the gene-set association

with the phenotype of interest: a smaller number

of genes are easier to understand and facilitate

biological insight into disease processes. Other

arguments for gene set reduction are listed below.

Reduction to the most predictive genes might allow

for targeted therapies and intervention strategies [25].

Limiting the number of genes facilitates a change

of platform from a high-throughput microarray

technology to alternative methods, such as real-

time PCR that are cheaper and quicker, increasing

the applicability to routine clinical setting for

diagnostic purposes [25–27]. If there are redun-

dant genes, examination of their expression levels

would not improve clinical decisions but increases

unnecessary costs. Finally, validation studies for

robustness, reliability, patenting and commercializa-

tion, implementation in different centers with

different platforms are greatly facilitated by using

core subsets.
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APPENDIXçGENE-SET
REDUCTION SIMULATION
EXPERIMENT
We evaluated the performance of SAM-GSR in a

simple simulation study as a proof-of-principle

experiment. We randomly generated gene expres-

sion levels for a gene set of size n, for a total of

M subjects, M/2 in each of two phenotype groups.

Out of the n genes, s were differentially expressed,

and the remaining genes were from i.i.d. N(0,1)

distribution. The s differentially expressed genes

Table A1: Performance of SAM-GSR

c Percent genes
differentially
expressed

c¼ 0.05 c¼ 0.1 c¼ 0.2

Set size Set size Set size

10 20 60 100 10 20 60 100 10 20 60 100

0 0 0.4(2) 0.3(1.4) 0.1(.5) 0.1(.3) 0.5(2.7) 0.4(1.8) 0.2(0.7) 0.1(0.5) 0.7(3.8) 0.5(2.5) 0.2(1.1) 0.2(0.8)
1 5 ^ 5.3(1.4) 2.5(1.3) 2.3(1.3) ^ 5.5(2.2) 2.9(1.6) 2.8(1.5) ^ 6.1(3.2) 3.7(2.1) 3.4(1.8)

10 10.4(2.2) 6.3(2.5) 5.4(2.5) 5.6(2.3) 10.9(3.3) 7.1(3.2) 6.3(2.7) 6.3(2.3) 12.2(5.3) 8.6(4.3) 7.4(2.9) 7.3(2.5)
50 36.6(10.8) 37.8(8.7) 39.6(7.3) 39.6(7.2) 40.5(10.6) 40.5(8.3) 41.6(6.6) 41.4(6.5) 45(10.4) 43.9(7.9) 43.7(6) 43.3(5.8)
100 86(16.7) 86.9(15) 86.8(14.4) 88.1(13.7) 91.8(13.4) 91.5(12.4) 91.1(11.8) 92(10.9) 96.2(9.5) 95.4(9.5) 94.7(8.9) 95.3(7.9)

2 5 ^ 5.3(1.6) 4.8(0.9) 4.6(0.7) ^ 5.6(2.3) 5(1) 4.8(0.8) ^ 6.3(3.4) 5.4(1.3) 5.2(1)
10 10.5(2.4) 10.1(1.4) 9.6(1) 9.5(0.9) 11(3.5) 10.5(1.9) 9.9(1.1) 9.8(1) 12.5(5.5) 11.3(2.9) 10.4(1.4) 10.2(1.2)
50 50.4(2.4) 50.1(1.5) 49.6(1) 49.5(0.8) 51(3.4) 50.6(2) 50(1) 49.7(0.8) 52.5(5.2) 51.3(3) 50.4(1.3) 50.1(1)
100 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

5 5 ^ 5.3(1.6) 5.1(0.5) 5.1(0.4) ^ 5.6(2.3) 5.2(0.8) 5.2(0.6) ^ 6.3(3.4) 5.5(1.2) 5.4(0.9)
10 10.6(2.5) 10.3(1.2) 10.1(.5) 10.1(0.4) 11(3.6) 10.6(1.8) 10.2(0.8) 10.2(0.6) 12.7(5.5) 11.3(2.9) 10.5(1.2) 10.4(0.9)
50 50.5(2.3) 50.2(1.2) 50.1(.5) 50.1(0.3) 51(3.4) 50.6(1.9) 50.2(0.7) 50.2(0.5) 52.2(5.2) 51.3(3) 50.5(1.1) 50.3(0.8)
100 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

Percent of genes selected in the reduced set, for three cutoffs, c¼ 0.05, c¼ 0.1 and c¼ 0.2, averaged over1000 iterations, together with standard
errors. Sampling 5% does not apply for a set size as small as10.
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were generated from MVN(�i,
P

) where �1 j ¼ �,
and �2 j ¼ 0, for j¼ 1, . . ., s, so that the difference

between the two phenotype groups’ means is

�1 j � �2 j ¼ �, and the s� s matrix
P

was

block-diagonal with two identical blocks whose

diagonal and off-diagonal elements were 1 and

0.5, respectively. We checked if SAM-GSR

selects core subsets consisting of the s differentially
expressed genes.

In the simulation experiment, we generated sets

of n¼ 10, 20, 60 and 100 genes, such that s of

them were differentially expressed. We used a

sample size of M¼ 40, with 20 subjects in each

group. We varied the distance between means of

the two phenotype groups, � ¼ 0, 1, 2 and 5, and

also the number of differentially expressed genes s,

were given as the percent of genes in the gene set

that are differentially expressed: 0%, 5%, 10%, 50%

and 100%. We checked if SAM-GSR selects core

subsets consisting of the s differentially expressed

genes. Table A1 shows the results in term of

percent of genes selected by SAM-GSR in the

reduced sets, corresponding to cutoffs c¼ 0.05,

c¼ 0.1 and c¼ 0.2, averaged over 1000 iterations.

For cutoff c¼ 0.05 and 0.1, the percent of genes

selected in the reduced set is close to the percent of

genes differentially expressed, indicating that the

performance of SAM-GSR is overall good, tending

to improve with increased set size and �, the mean

expression difference between the two phenotype

groups. SAM-GSR performance is poorer for the

more liberal cutoff c¼ 0.2.

34 Dinu et al.


